选择事件演示
您可以通过设置艺术家的“选择器”属性来启用拾取(例如,matplotlib Line2D,Text,Patch,Polygon,AxesImage等...)
选择器属性有多种含义
- None - 此艺术家对象的选择功能已停用(默认)
- boolean - 如果为True,则启用拾取,如果鼠标事件在艺术家上方,艺术家将触发拾取事件
- float - 如果选择器是一个数字,则它被解释为以点为单位的epsilon容差,如果事件的数据在鼠标事件的epsilon内,则艺术家将触发事件。 对于某些艺术家(如线条和补丁集合),艺术家可能会为生成的挑选事件提供其他数据,例如,挑选事件的epsilon中的数据索引
-
function - 如果选择器是可调用的,则它是用户提供的函数,用于确定艺术家是否被鼠标事件命中。
hit, props = picker(artist, mouseevent)
确定命中测试。 如果鼠标事件在艺术家上方,则返回hit = True,props是要添加到PickEvent属性的属性字典
通过设置“选取器”属性启用艺术家进行拾取后,您需要连接到图形画布pick_event以获取鼠标按下事件的拾取回调。 例如,
def pick_handler(event):
mouseevent = event.mouseevent artist = event.artist # now do something with this...
传递给回调的pick事件(matplotlib.backend_bases.PickEvent)始终使用两个属性触发:
-
mouseevent - 生成拾取事件的鼠标事件。 鼠标事件又具有x和y(显示空间中的坐标,如左下角的像素)和xdata,ydata(数据空间中的坐标)等属性。 此外,您可以获取有关按下哪些按钮,按下哪些键,鼠标所在的轴等的信息。有关详细信息,请参阅matplotlib.backend_bases.MouseEvent。
-
artist - 生成pick事件的matplotlib.artist。
此外,某些艺术家(如Line2D和PatchCollection)可能会将其他元数据(如索引)附加到符合选择器条件的数据中(例如,行中指定的epsilon容差范围内的所有点)
以下示例说明了这些方法中的每一种。
import matplotlib.pyplot as plt
from matplotlib.lines import Line2D
from matplotlib.patches import Rectangle
from matplotlib.text import Text
from matplotlib.image import AxesImage
import numpy as np
from numpy.random import rand
if 1: # simple picking, lines, rectangles and text
fig, (ax1, ax2) = plt.subplots(2, 1)
ax1.set_title('click on points, rectangles or text', picker=True)
ax1.set_ylabel('ylabel', picker=True, bbox=dict(facecolor='red'))
line, = ax1.plot(rand(100), 'o', picker=5) # 5 points tolerance
# pick the rectangle
bars = ax2.bar(range(10), rand(10), picker=True)
for label in ax2.get_xticklabels(): # make the xtick labels pickable
label.set_picker(True)
def onpick1(event):
if isinstance(event.artist, Line2D):
thisline = event.artist
xdata = thisline.get_xdata()
ydata = thisline.get_ydata()
ind = event.ind
print('onpick1 line:', zip(np.take(xdata, ind), np.take(ydata, ind)))
elif isinstance(event.artist, Rectangle):
patch = event.artist
print('onpick1 patch:', patch.get_path())
elif isinstance(event.artist, Text):
text = event.artist
print('onpick1 text:', text.get_text())
fig.canvas.mpl_connect('pick_event', onpick1)
if 1: # picking with a custom hit test function
# you can define custom pickers by setting picker to a callable
# function. The function has the signature
#
# hit, props = func(artist, mouseevent)
#
# to determine the hit test. if the mouse event is over the artist,
# return hit=True and props is a dictionary of
# properties you want added to the PickEvent attributes
def line_picker(line, mouseevent):
"""
find the points within a certain distance from the mouseclick in
data coords and attach some extra attributes, pickx and picky
which are the data points that were picked
"""
if mouseevent.xdata is None:
return False, dict()
xdata = line.get_xdata()
ydata = line.get_ydata()
maxd = 0.05
d = np.sqrt((xdata - mouseevent.xdata)**2. + (ydata - mouseevent.ydata)**2.)
ind = np.nonzero(np.less_equal(d, maxd))
if len(ind):
pickx = np.take(xdata, ind)
picky = np.take(ydata, ind)
props = dict(ind=ind, pickx=pickx, picky=picky)
return True, props
else:
return False, dict()
def onpick2(event):
print('onpick2 line:', event.pickx, event.picky)
fig, ax = plt.subplots()
ax.set_title('custom picker for line data')
line, = ax.plot(rand(100), rand(100), 'o', picker=line_picker)
fig.canvas.mpl_connect('pick_event', onpick2)
if 1: # picking on a scatter plot (matplotlib.collections.RegularPolyCollection)
x, y, c, s = rand(4, 100)
def onpick3(event):
ind = event.ind
print('onpick3 scatter:', ind, np.take(x, ind), np.take(y, ind))
fig, ax = plt.subplots()
col = ax.scatter(x, y, 100*s, c, picker=True)
#fig.savefig('pscoll.eps')
fig.canvas.mpl_connect('pick_event', onpick3)
if 1: # picking images (matplotlib.image.AxesImage)
fig, ax = plt.subplots()
im1 = ax.imshow(rand(10, 5), extent=(1, 2, 1, 2), picker=True)
im2 = ax.imshow(rand(5, 10), extent=(3, 4, 1, 2), picker=True)
im3 = ax.imshow(rand(20, 25), extent=(1, 2, 3, 4), picker=True)
im4 = ax.imshow(rand(30, 12), extent=(3, 4, 3, 4), picker=True)
ax.axis([0, 5, 0, 5])
def onpick4(event):
artist = event.artist
if isinstance(artist, AxesImage):
im = artist
A = im.get_array()
print('onpick4 image', A.shape)
fig.canvas.mpl_connect('pick_event', onpick4)
plt.show()